National security needs dictate the development of new radar systems capable of identifying and tracking exoatmospheric threats to aid our defense. These new radar systems feature reduced noise floors, electronic beam steering, and ultra-wide bandwidths, all of which facilitate threat discrimination. However, in order to identify missile attributes such as RF reflectivity, distance, and velocity, many existing processing algorithms rely upon narrow bandwidth assumptions that break down with increased signal bandwidth. We present a fresh investigation into these algorithms for removing bandwidth limitations and propose novel state-space and direct-data factoring formulations such as * the multidimensional extension to the Eigensystem Realization Algorithm, * employing state-space models in place of interpolation to obtain a form which admits a separation and isolation of solution components, * and side-stepping the joint diagonalization of state transition matrices, which commonly plagues methods like multidimensional ESPRIT. We then benchmark our approaches and relate the outcomes to the Cramer-Rao bound for the case of one and two adjacent reflectors to validate their conceptual design and identify those techniques that compare favorably to or improve upon existing practices.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1250 |
Date | 03 May 2007 |
Creators | Holl, Jr., David J. |
Contributors | David Cyganski, Advisor, Homer F. Walker, Committee Member, Kevin A. Clements, Committee Member |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Doctoral Dissertations (All Dissertations, All Years) |
Page generated in 0.002 seconds