Austin, Texas consists of highly expansive soils that have caused failures in many structures. Minimizing the detrimental effects of expansive soils on structures requires that the swelling of these soil(s) is quantified accurately, efficiently, and timely. A testing procedure was developed to directly measure soil swelling using centrifuge technology by Plaisted, 2009. This testing procedure was developed in order to reduce the test duration while generating more swelling data relative to conventional tests that directly measure swell. However, the new procedure was incapable of obtaining in-flight swell data, resulting in the need to develop a procedure to directly measure swell during centrifugation.
The objectives of this study were to update the testing procedure developed by Plaisted, 2009 by incorporating the use of an in-flight Data Acquisition System (DAS) that would produce accurate and repeatable results; and use the updated testing procedure to quantify the effects of compaction conditions on swelling for three expansive soils in the Austin area (Eagle Ford Shale, Houston Black Clay, and Taylor Clay). A DAS consisting of linear position sensors, analog to digital converters, JeeNode Arduinos, and an accelerometer was developed and installed within the centrifuge. Specimens were compacted at various water contents, and densities, and subjected to different g-levels. The effects of g-level, compaction water content, compaction dry unit weight, and soil type were determined by comparing the 34 hour swell percentages for the compacted specimens.
The results of this study showed that in-flight monitoring of clay swelling could be successfully implemented in a comparatively small centrifuge, and that the data collected from the DAS was accurate and repeatable. Swelling of tested soils was found to be sensitive to changes in water content around optimum, with specimens compacted wet of optimum swelling less than specimens compacted dry of optimum. A 6% increase in relative compaction was found to negligibly affect the swelling. Finally, variations in confinement and compaction conditions were found to have a greater effect on swelling for soils that are more expansive in nature compared to soils less expansive in nature. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2012-08-5925 |
Date | 29 October 2012 |
Creators | Walker, Trevor Meade |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0017 seconds