Expansive soils contain clay minerals that undergo a change in bulk volume in response to variances in environmental conditions. The ability to predict the occurrence and geotechnical behavior of swelling soils with a known degree of certitude would allow engineers to take measures to limit the damage resulting from these metastable soils. Research was conducted to investigate the regional distribution, mineralogy, and engineering properties of expansive soils in the Tucson Basin. Mineralogic studies employed X-ray diffraction procedures for the identification of clay mineralogy. The compilation of expansion-related soil parameters, from the geotechnical job-files of a local engineering consulting firm, allowed the development of an engineering database. The application of geostatistical analysis for the cartographical representation of mineralogic and geotechnical data permitted a regional characterization of expansive clay soils. Clay mineralogy was found to be directly related to the volumetric stability displayed by native soils, as well as the geology of the Tucson Basin.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276976 |
Date | January 1989 |
Creators | Brooks, Mark Whitfield, 1964- |
Contributors | Nowatzki, Edward A. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | en_US |
Detected Language | English |
Type | text, Thesis-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0024 seconds