Activation of platelets is essential for hemostasis. Following damage to the vascular endothelium collagen is exposed, to which platelets stably adhere. After adhesion on collagen, a signaling cascade is initiated, mediated by Glycoprotein VI (GPVI), which results in platelet activation. A major signaling protein in GPVI signaling is Spleen tyrosine kinase (Syk). It undergoes phosphorylation and activation following GPVI stimulation. Syk's central role in this physiological process suggests regulation of its activity is required to maintain the platelets response to collagen within physiological limits. The regulation of Syk activation is the focus of this work. Previously published reports implicate the phosphatases SHP-1, SHP-2 and TULA-2 in the negative regulation of Syk. Therefore, we tested these phosphatases possible role in platelets. We show that SHP-1 can dephosphorylate Syk in vitro, but is unable to bind Syk. Also, Syk is hypophosphorylated in GPVI-stimulated SHP-1 deficient platelets and platelet functional responses are minimally affected compared to wild-type platelets. SHP-2 is unable to bind Syk and Syk is not a good substrate for SHP-2 in vitro. TULA-2 dephosphorylated Syk in vitro and associated with Syk in platelets. In TULA-2 deficient platelets, Syk and PLCγ2 were hyperphosphorylated compared to wild-type platelets. Deletion of TULA-2 resulted in enhanced GPVI-dependent platelet functional responses and a prothrombotic phenotype. c-Cbl has been shown to be a negative regulator of GPVI signaling, possibly by regulating Syk phosphorylation. Thus, SHP-1, SHP-2 and TULA-2’s role in c-Cbl regulation of GPVI was also investigated. We show that TULA-2 is able to bind c-Cbl in platelets. SHP-1 and SHP-2 do not. Furthermore, we show a striking similarity between the phenotype of TULA-2 and c-Cbl deficient platelets. However, in vitro binding studies show TULA-2 is able to bind Syk independently of c-Cbl. Thus, the exact role of c-Cbl in regulating Syk dephosphorylation is unclear. In conclusion, we show SHP-1 and SHP-2 are probably not involved in the negative regulation of Syk. However, TULA-2 is the major phosphatase responsible for the negative regulation of Syk in GPVI signaling. This serves to negatively regulate GPVI-mediated platelet function and prevent uncontrolled platelet activation that could lead to thrombosis. / Pharmacology
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/4114 |
Date | January 2010 |
Creators | Thomas, Dafydd Huw |
Contributors | Daniel, James L., Ashby, Barrie, Kunapuli, Satya P., Tsygankov, Alexander Y., Wang, Hong, 1956 September 19-, Bergmeier, Wolfgang |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 153 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/4096, Theses and Dissertations |
Page generated in 0.0025 seconds