Return to search

Lagrange-d'alembert integrators

A Lagrange--d'Alembert integrator is a geometric numerical method for finding numerical solutions to the Lagrange--d'Alembert equations for mechanical systems with nonholonomic constraints that are linear in the velocities. The integrator is developed from geometry and principles that are analogues of the continuous theory.<p>Using discrete analogues of the symplectic form and momentum map, the resulting methods are symplectic and momentum preserving whenever the continuous system is symplectic and momentum preserving. In addition, it is possible to, in principle, generate Lagrange--d'Alembert integrators of any method order.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-06062007-150506
Date08 June 2007
CreatorsCuell, Charles Lee
ContributorsSzyszkowski, Walerian, Szmigielski, Jacek, Srinivasan, Raj, Patrick, George W., Cushman, Richard, Brooke, James
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-06062007-150506/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0019 seconds