The activities of pairs of mammalian motor neurons (MNs) receiving varying degrees of common excitatory synaptic input were simulated to study the relationship between nearly-coincident spiking and common excitatory drive. The somatic membrane potential of each MN was modeled using a single compartment model. Each MN was modeled toreceive synaptic contacts from hundreds of pre-synaptic fibers. The percentage of pre-synaptic fibers that diverged to supply both MNs of a pair with common synaptic input could be varied from 0 (no common inputs) to 100% (all common inputs). Spikes trains on separate re-synaptic fibers were independent of one another and were modeled as realizations of renewal processes with mean firing rates (10 - 50Hz) resembling that associated with supra-spinal input. Maximum synaptic conductances and time constants were varied across synapsesto match experimentally observed somatic EPSPs. The number of active pre-synaptic fibers to each MN was adjusted in order that the firingrates of MNs were between 8 and 15 Hz. For each common input condition, 100 s of concurrent spiking activity of the MNs was usedto construct cross-correlation histograms. The sizes of the central peaks in the histograms were quantified using both the k' (Ellaway and Murthy 1985) and CIS (Nordstrom et al. 1992) indices ofsynchrony. Monotonically increasing linear relationships between the proportion of common synaptic input and the magnitude of synchronywere observed for both indices. For example, the model predicted that 10% common input would yield a CIS value of 0.27 whereas 100% commoninput would yield a CIS value of 1.5. These values are within the range of values observed experimentally. These results, therefore,provide a means to translate measures of nearly-coincident spiking into plausible renditions of synaptic connectivity.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/196051 |
Date | January 2008 |
Creators | Herrera-Valdez, Marco Arieli |
Contributors | Fuglevand, Andrew J., Fuglevand, Andrew J., Fellous, Jean-Marc, Levine, Richard B. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0018 seconds