Permanent magnet synchronous machine drives are used more often. Although, synchronous machines drive also suffer from possible faults. This thesis is focused on the detection of the three-phase synchronous motor winding faults and the detection of the drive control loop sensors' faults. Firstly, a model of the faulty winding of the motor is presented. Effects of the inter-turn short fault were analyzed. The model was experimentally verified by fault emulation on the test bench with an industrial synchronous motor. Inter-turn short fault detection algorithms are summarized. Three existing conventional winding fault methods based on signal processing of the stator voltage and stator current residuals were verified. Three new winding fault detection methods were developed by the author. These methods use a modified motor model and the extended Kalman filter state estimator. Practical implementation of the algorithms on a microcontroller is described and experimental results show the performance of the presented algorithms in different scenarios on test bench measurements. Highly related motor control loop sensors fault detection algorithms are also described. These algorithms are complementary to winding fault algorithms. The decision mechanism integrates outputs of sensor and winding fault detection algorithms and provides an overall drive fault diagnosis concept.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:447552 |
Date | January 2021 |
Creators | Otava, Lukáš |
Contributors | Glasberger, Tomáš, Lettl, Jiří, Václavek, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0033 seconds