The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 6th report covers the period from January 2007 to December 2008. In these two years, 50 peerreviewed papers have been published based on experiments done at the beamline. The average citation index, which increased constantly over the years, has now reached 3.5 (RCH) and 3.0 (MRH), indicating that papers are predominately published in journals with high impact factors. Six exemplary highlight reports on the following pages should demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH).
Demand for beamtime remains very high as in the previous years, with an average oversubscription rate of 1.8 for ESRF experiments. The attractiveness of our beamline is based upon the high specialization of its two end-stations. RCH is one of only two stations in Europe dedicated to x-ray absorption spectroscopy of actinides and other radionuclides. The INE beamline at ANKA provides superior experimental flexibility and extends to lower energies, including important elements like P and S. In contrast, ROBL-RCH provides a much higher photon flux, hence lower detection limits crucial for environmental samples, and a higher energy range extending to elements like Sb and I. Therefore, both beamlines are highly complementary, covering different aspects of radiochemistry research. Once the MARS beamline at SOLEIL is ready to run radionuclides (>2010), it will cover a third niche (Materials Science of actinides, including irradiated fuel) not accessible for the two other beamlines.
The Materials Research Hutch MRH has realized an increasing number of in-situ investigations in the last years. On the one hand thin film systems were characterized during magnetron sputtering. On the other hand diffraction experiments under controlled atmosphere were performed. A high variety of experimental parameters was covered by varying pressure, temperature and atmospheric compositions including highly reactive gases. Furthermore structural investigations were combined with electrical conductivity measurements. These kind of in-situ experiments are the key to monitor and understand reaction mechanism or the influence of process parameters, which are again the basis to tailor materials properties on demand. The core competences of MRH are these experimental possibilities, which make it unique among other diffraction beamlines. In fall 2007, ROBL was reviewed by an international panel on behalf of the ESRF. The very positive panel report recommended a renewal of the contract between ESRF and FZD for the next five years, and a major upgrade of critical optical components of the beamline to keep ROBL competitive for the next decade. The FZD will provide 2 Mio € from 2009 to 2011 for this upgrade, which will be performed in parallel to the major upgrade of the ESRF to minimize the downtime. According to the current plans of the ESRF, our users have to expect that ROBL will have only limited or no operation for several months from August 2011 on.
Since July 2004 the beamline is a member of the pooled facilities of ACTINET – European Network of Excellence. In the reported period, RCH has provided 27 % of its inhouse beamtime to perform 11 ACTINET experiments. The success of ACTINET within FP-6 has now led to a renewal of ACTINET within FP-7, running until end of 2011.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:22116 |
Date | January 2009 |
Creators | Scheinost, A. |
Publisher | Forschungszentrum Dresden-Rossendorf |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:report, info:eu-repo/semantics/report, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:d120-qucosa-237199, qucosa:22350 |
Page generated in 0.1207 seconds