烯烴是世界上最被廣泛應用的化工原料之一。最近我們通過含氮雜環卡賓鎳氫化物來催化氫化烯化反應,用廉價的單取代簡單烯烴成功合成了更有價值的不對稱1,1-偕二取代烯烴。雖然它們的對映體可以由傳統的手性拆分方法在實驗室中獲得,但卻不太可能實際應用於工業中,從而限制了此新方法的可應用性。因此,本文中我們透過使用烯烴醛耦合反應生成手性含氮雜環卡賓鎳氫化物 [(NHC)NiH]OTf,並以此為催化劑,將其應用在溫和條件下高選擇性的催化不對稱氫化烯化反應。另外,上述烯烴醛耦合反應的副產物 (烯丙基矽醚) 亦可成為基板,通過催化受控的替換反應,最後合成並得出較高取代的烯烴。基於烯丙基磷酸二芳酯為目前在生物學上中一種重要的研究項目,以及其當前製備的困難,我們通過形成碳磷鍵來探索這些烯丙基矽醚的可應用性。故此,在現有的磷碳反應文獻和 Ritter 反應的鼓舞下,我們提供開發烯丙基磷酸二芳酯在溫和條件下的催化製備方法。此方法除可補充現有製備方法的不足外,亦能增加此類化合物有較高的取代基靈活性。 / Alkenes are one of the most versatile chemical feedstock in chemistry. Among the numerous preparative strategies, hydroalkenylation (H.A.) by using N-heterocyclic carbene (NHC)-NiH reported recently by our group represents a novel strategy to access synthetically valuable unsymmetric terminal 1, 1-disubstituted alkenes (DSA) from widely available α-alkenes. Their enantiomers could be obtained by classic chiral resolution methods in laboratory but may not be practical in industry, which limits the applications of this new methodology. As a result, herein we developed a catalytic asymmetric H.A. with high selectivities under mild conditions based on a chiral [(NHC)NiH]OTf catalyst generated in situ from alkene-aldehyde (A.A.) coupling. Since the above A.A. coupling by-product (allyl silyl ethers) is a structural motif potentially amenable for higher alkene catalytic synthesis by a controlled substitution, and because of the current difficulties in the preparation of biologically important allyl diarylhosphonates, we also explore the use of those allyl silyl ethers by means of C-P bond formation. Inspired by both existing phosphonylation literatures and Ritter reaction, we developed a catalytic preparation method for those compounds which complements the existing methods with a high substituent flexibility under milder conditions. / Detailed summary in vernacular field only. / Chan, Chun Wa. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese. / Table of Contents --- p.i / Acknowledgement --- p.iv / Abstract --- p.v / Abstract (Chinese Version) --- p.vi / Abbreviation --- p.vii / Chapter CHAPTER 1 --- IMPORTANCE OF GREENER ALKENE SYNTHESIS AND INTRODUCTION OF NHC AND ITS APPLICATION IN 1,1-DSA SYNTHESIS --- p.1 / Chapter 1.1 --- Synthesis of Higher Alkenes with Different Substitution Patterns from Simple α-Alkene --- p.1 / Chapter 1.2 --- Introduction of NHC --- p.6 / Chapter 1.2.1 --- Electronic Property Comparison --- p.6 / Chapter 1.2.2 --- NHCMetal Complex Stability --- p.8 / Chapter 1.2.3 --- Steric Parameter Comparison --- p.9 / Chapter 1.3 --- Challenges in Using NHC-NiH as Hydroalkenylation (H.A.) Catalyst --- p.10 / Chapter 1.4 --- A New Solution for Catalytic NHC-NiH Based H.A. and 1,1-DSA Preparation --- p.14 / Chapter 1.5 --- Objective and Approach for Asymmetric Cross-H.A. --- p.18 / Chapter CHAPTER 2 --- PRELIMINARY STUDY ON LIGAND STRUCTURALACTIVITY-RELATIONSHIPS (SAR) --- p.21 / Chapter 2.1 --- Structural Criteria of Chiral NHCs for Asymmetric H.A. --- p.21 / Chapter 2.2 --- Successful Asymmetric H.A. Using Selected Chiral C2 Symmetric Ligands Rationalized by Stereo-Chemical Models --- p.24 / Chapter CHAPTER 3 --- STUDIES AND OPTIMIZATION OF CHIRAL C₁-NHC CATALYZED H.A. --- p.28 / Chapter CHAPTER 4 --- SECOND GENERATION OF CATALYST --- p.41 / Chapter 4.1 --- A New Lead: Substrates Electronic and Steric Effects on Ee --- p.41 / Chapter 4.2 --- Ee Enhancement by Using Electronic Modified N[superscriptAr] NHC --- p.48 / Chapter 4.3 --- Scope of Asymmetric Hydroalkenylation --- p.55 / Chapter 4.4 --- Conclusion --- p.62 / Chapter REFERENCE --- p.64 / Chapter APPENDIX (I) - --- ASYMMETRIC HYDROALKENYLATION --- p.71 / EXPERIMENTAL SECTION --- p.71 / GC CHROMATOGRAM --- p.178 / HPLC CHROMATOGRAM --- p.192 / Chapter REFERENCE OF APPENDIX (I) --- p.207 / Chapter APPENDIX (II) - --- APPLICATIONS OF ALLYL SILYL ETHER OBTAINED FROM HA CATALYST GENERATION: SELECTIVE PREPARATION OF ALLYL DIARYLPHOSPHONYLATION --- p.209 / Chapter A.1 --- Importance of Allyl Phosphonates --- p.209 / Chapter A.2 --- Conventional Methods and Challenges of Allyl Phosphonates Preparation with Higher Alkenes Functionality --- p.210 / Chapter A.3 --- Objective and Approach --- p.212 / Chapter A.4 --- Preliminary Results of Allyl Diarylphosphonylation --- p.213 / Chapter A.4.1 --- Strategies for Chemoselectivity Improvement --- p.215 / Chapter A.4.2 --- Proposed Mechanism: Ritter-like Reaction Pathway --- p.219 / Chapter A.5 --- Scope of Allyl Diarylphosphonylation --- p.222 / Chapter A.6 --- Introduction of Allyl Arylation --- p.228 / Chapter A.7 --- Scope of Allyl Arylation --- p.229 / Chapter A.8 --- Conclusion --- p.232 / EXPERIMENTAL SECTION --- p.234 / Chapter REFERENCE OF APPENDIX (II) --- p.274 / Chapter NMR --- SPECTRA COMPOUNDS FOR APPENDIX (I) -ASYMMETRIC HYDROALKENYLATION --- p.280 / Chapter COMPOUNDSFOR APPENDIX (II) - --- APPLICATIONS OF ALLYL SILYL ETHER OBTAINED FROM HA CATALYST GENERATION: SELECTIVE PREPARATION OF ALLYL DIARYLPHOSPHONYLATION --- p.388
Identifer | oai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328071 |
Date | January 2013 |
Contributors | Chan, Chun Wa., Chinese University of Hong Kong Graduate School. Division of Chemistry. |
Source Sets | The Chinese University of Hong Kong |
Language | English, Chinese |
Detected Language | English |
Type | Text, bibliography |
Format | electronic resource, electronic resource, remote, 1 online resource (ix, 451 leaves) : ill. |
Rights | Use of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
Page generated in 0.0075 seconds