Synthetic Aperture Focusing Technique (SAFT) is a powerful method to createfocused images of the inside of opaque samples by using delay-and-sum of acquireddata. It gives a high resolution and when using a generation laser and a detectionlaser it is also non-contact. This thesis was made at Swerim, and the aim wasto create an 3D-SAFT algorithm and to visualise the reconstructed image. Twosamples were used, both were 3D-printed with known defects that varied in sizefrom 0.05 mm to 1 mm. The defects were lined up in rows, with 10 in each row.After the algorithm was used on the acquired data from the two samples, six toeight defects were found in each row. Both samples had three rows of defects. Themeasured sizes of the defects were not exactly as the actual size but ranged a fewmillimetre too small or big compared to the real size. Overall the algorithm workswell. The resolution of the 3D images are the same as for the 2D-SAFT algorithmalready made by Swerim. As of now the 3D images may not be worth the time ittakes to process, but if a better way to visualise the data is made in the future, itwill be good to be able to see the defects in 3D.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-85381 |
Date | January 2021 |
Creators | Zalamans, Louise |
Publisher | LuleƄ tekniska universitet, Signaler och system |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds