Return to search

Global Backprojection for Imaging of Targets Using M-sequence UWB radar system

Synthetic Aperture Radar (SAR) is an emerging technique in remote sensing. The technology is capable of producing high-resolution images of the earth surface in all-weather conditions. Thesis work describes the present available methods for positioning and imaging targets using M-sequence UWB (Ultra-Wideband) radar signals with moving antennas and SAR algorithm to retrieve position and image of the target. M-sequence UWB radar technology used as signal source for transmission and receiving echoes of target. Pseudo random binary sequence is used as a transmitted signal. These radars have an ability to penetrate signal through natural and unnatural objects. It offers low cost and quality security system. Among a number of techniques of image retrieval in Synthetic Aperture Radar, study of Global back projection (GBP) algorithm is presented. As a time domain algorithm, GBP possesses inherent advantages over frequency domain algorithm like ability to handle long integration angle, wider bandwidth and unlimited aperture size. GBP breaks the full synthesis aperture into numbers of sub-apertures. These sub-apertures are treated pixel by pixel. Each sub-aperture is converted to a Cartesian image grid to form an image.  During this conversion the signal is treated with linear interpolation methods in order to achieve the best quality of the images. The objective of this thesis is the imaging of target using M-sequence UWB radar and processing SAR raw data using Global back projection algorithm.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-15656
Date January 2013
CreatorsKota, Madhava Reddy, Shrestha, Binod
PublisherHögskolan i Gävle, Akademin för teknik och miljö, Högskolan i Gävle, Akademin för teknik och miljö
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds