Return to search

APPLICATION OF SIGNAL DECOMPOSITION TO IMPROVE TIME DELAY ESTIMATES FOR SYNTHETIC APERTURE SONAR MOTION COMPENSATION

Synthetic Aperture Sonar (SAS) provides the best opportunity for side-looking sonar mounted on underwater platforms to achieve high-resolution images. However, SAS processing requires strict constraints on resolvable platform motion. The most common approach to estimate this motion is to use the Redundant Phase Center (RPC) technique. Here the ping interval is set, such that a portion of the sonar array overlaps as the sensor moves forward. The time delay between the pings received on these overlapping elements is estimated using cross-correlation. These time delays are then used to infer the pingto-ping vehicle motion. Given the stochastic nature of the operational environment, some level of decorrelation between these two signals is likely.
In this research, two iterative signal decomposition methods well suited for nonlinear and non-stationary signals, are investigated for their potential to improve the Time Delay Estimation (TDE). The first of this type, the Empirical Mode Decomposition (EMD) was introduced by Huang in the seminal paper, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis and is the foundation for the algorithms used in this research. This method decomposes a signal into a finite sequence of simple components termed Intrinsic Mode Functions (IMFs). The Iterative Filter (IF) approach, developed by Lin, Wang and Zhou, builds on the EMD framework. The sonar signals considered in this research are complex baseband signals. Both the IF and EMD algorithms were designed to decompose real signals. However, the IF variant, the Multivariate Fast Iterative Filtering (MFIF) Algorithm, developed by Cicone, and the EMD variant, the Fast and Adaptive Multivariate Empirical Mode Decomposition (FAMVEMD) algorithm, developed by Thirumalaisamy and Ansell, preserve both the magnitude and phase in the decomposition and hence were chosen for this analysis. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2021. / FAU Electronic Theses and Dissertations Collection

Identiferoai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_82108
ContributorsGazagnaire, Julia (author), Beaujean, Pierre-Philippe (Thesis advisor), Florida Atlantic University (Degree grantor), Department of Ocean and Mechanical Engineering, College of Engineering and Computer Science
PublisherFlorida Atlantic University
Source SetsFlorida Atlantic University
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text
Format146 p., application/pdf
RightsCopyright © is held by the author with permission granted to Florida Atlantic University to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder., http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0018 seconds