Contemporary systems engineering problems are becoming increasingly complex as they are handled by geographically distributed design teams, constrained by the objectives of multiple stakeholders, and inundated by large quantities of design information. According to the principles of model-based systems engineering (MBSE), engineers can effectively manage increasing complexity by replacing document-centric design methods with computerized, model-based approaches. In this thesis, modeling constructs from SysML and Modelica are integrated to improve support for MBSE. The Object Management Group has recently developed the Systems Modeling Language (OMG SysML ) to provide a comprehensive set constructs for modeling many common aspects of systems engineering problems (e.g. system requirements, structures, functions). Complementing these SysML constructs, the Modelica language has emerged as a standard for modeling the continuous dynamics (CD) of systems in terms of hybrid discrete- event and differential algebraic equation systems. The integration of SysML and Modelica is explored from three different perspectives: the definition of CD models in SysML; the use of graph transformations to automate the transformation of SysML CD models into Modelica models; and the integration of CD models and other SysML models (e.g. structural, requirements) through the depiction of simulation experiments and engineering analyses. Throughout the thesis, example models of a car suspension and a hydraulically-powered excavator are used for demonstration. The core result of this work is the provision of modeling abilities that do not exist independently in SysML or Modelica. These abilities allow systems engineers to prescribe necessary system analyses and relate them to stakeholder concerns and other system aspects. Moreover, this work provides a basis for model integration which can be generalized and re-specialized for integrating other modeling formalisms into SysML.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/24768 |
Date | 05 May 2008 |
Creators | Johnson, Thomas Alex |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds