Les méthodes de prédiction linéaire de processus aléatoires, ou krigeage, et les méthodes de régression régularisée par une norme d'espace hilbertien à noyau reproduisant (splines, approximation par fonctions de base radiales, régression à vecteurs de support, etc.) constituent deux approches fondamentales de modélisation comportementale de systèmes non-linéaires. Les liens mathématiques entre ces deux approches ont été mentionnés à plusieurs reprises dans le passé. Fort peu exploités, ces liens n'en restent pas moins fondamentaux puisqu'ils permettent par exemple de comprendre comment formuler le problème de régression régularisée pour l'approximation de fonctions à valeurs vectorielles (cas des systèmes multivariables dits MIMO). Dans les deux approches, le choix du noyau est essentiel car il conditionne la qualité des modèles. Les principaux résultats théoriques sont issus de travaux en statistiques. Bien que de type asymptotique, ils ont des conséquences pratiques importantes rappelées et illustrées dans cette étude. Les noyaux considérés habituellement forment une famille restreinte offrant relativement peu de souplesse. Ceci nous a suggéré de développer des méthodes assemblant un noyau à partir d'un grand nombre de noyaux élémentaires. Elles ont permis d'obtenir des résultats satisfaisants notamment sur un problème test classique issu du domaine de la prédiction de séries chronologiques. Enfin, ce travail s'attache à montrer comment utiliser les méthodes de régression à noyaux à travers la présentation de problèmes réels. Le choix de noyau est abordé en pratique. La prise en compte d'informations disponibles a priori par utilisation du krigeage intrinsèque (régression semi-régularisée) est illustrée. Finalement, des éléments de planification d'expériences sont discutés.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00010199 |
Date | 12 May 2005 |
Creators | Vazquez, Emmanuel |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds