Return to search

Réduction au sens de la norme de Hankel de modèles dynamiques de dimension infinie

L'objet de cette thèse est d'étudier l'applicabilité de la méthode d'approximation rationnelle en norme de Hankel à des systèmes dynamiques linéaires de dimension d'état infinie. On illustre par trois exemples concrets les possibilités d'utilisation des techniques d'approximation développées ces dernières années, notamment par Curtain, Glover et Partington. Les exemples choisis représentent des phénomènes d'évolution décrits par des équations aux dérivées partielles, par rapport au temps et aux variables d'espace. Il s'agit: d'un problème de diffusion de chaleur, de type parabolique, pour lequel les techniques d'approximation s'adaptent assez directement ; de deux problèmes hyperboliques décrivant l'évolution d'une poutre en flexion et en torsion, pour lesquels une méthode originale appelée ``relaxation'' a été mise au point: préalable à l'approximation de Hankel, elle permet son application lorsque les pôes associés au système hyperbolique croissent suffisamment rapidement.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00410522
Date25 September 1992
CreatorsMaïzi, Nadia
PublisherÉcole Nationale Supérieure des Mines de Paris
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0023 seconds