Return to search

Phénomènes non linéaires et chaos dans les systèmes d’énergie renouvelable – Application à une installation photovoltaïque / Nonlinear phenomena and chaos in renewable energy systems - Application to a photovoltaic plant

Afin de satisfaire les besoins futurs en énergie et de réduire l’impact environnemental, l’application de l’énergie renouvelable propre a été récemment reconsidérée. Dans ce contexte, un intérêt croissant pour le système d’alimentation isolé a été mesuré.Le besoin de topologies de faible puissance alimentées par un générateur photovoltaïque, évitant l’utilisation de transformateur, accentue l’étude de systèmes d’alimentation autonomes de basse tension. D’où la nécessité d’étudier les stratégiesde contrôle associées garantissant la stabilité, la fiabilité et l’efficacité.À mesure que les systèmes d’alimentation autonome deviennent plus complexes, les non-linéarités jouent un rôle de plus en plus important dans le comportement du système. La modélisation doit refléter avec précision la dynamique des composants et du système. En outre, les outils d’analyse des systèmes dynamiques devraient être fiable, même dans différents régimes de fonctionnement, fournissant des prédictions précises du comportement de ces derniers. Ce travail est consacré à l’étude d’un système photovoltaïque autonome. La structure proposée se compose d’un panneau photovoltaïque, d’un hacheur et d’une charge connectée en cascade via un bus continu. Les efforts de recherche se concentrent sur le processus de modélisation et l’analyse de stabilité du système. Une implémentation avec une description complète du modèle est ainsi détaillée est validé epar des résultats de simulation. Après avoir donné l’état de l’art, le manuscrit est divisé en quatre parties. Ces parties sont dédiées à la modélisation d’une installation photovoltaïque, à l’amélioration de la simulation numérique, et à l’étude de dynamique de ce système sous contrôles numériques.La thèse présente un aperçu des modèles de générateurs photovoltaïques. Ensuite,un modèle électrique modifié du panneau photovoltaïque est proposé. Nous avons également détaillé le processus de modélisation de l’installation photovoltaïque.Un solveur amélioré de modèle Differential-Algebraic Equations (DAEs) est ensuite développé. Une dixième approche de modélisation est aussi présentée. Nous avons également décrit le système photovoltaïque par un modèle discret simplifié. Ensuite, l’analyse de stabilité du système étudié est détaillée. En outre, nous avons étudié le comportement chaotique qui apparaît dans l’installation photovoltaïque basée sur le hacheur à deux cellules. Le but de la dernière partie est de montrer comment stabiliser l’orbite chaotique du système. Enfin, pour atteindre cet objectif, la commande par retour d’état retardé Time-Delayed Feedback Control (TDFC) est appliquée. / In order to satisfy future energy requirement and reduce environmental impact, application of clean renewable energy, have been reconsidered recently. In this context, a growing interest in isolated power system has been observed. The need of low power topologies fed by photovoltaic array avoiding the use oftransformer open the study of small-scale stand-alone power system. Hence, theneed to study the associated control design strategies ensuring stability, reliability and high efficiency.As systems become more complex, nonlinearities play an increasingly importantrole in stand-alone power system behaviour. Modeling must accurately reflect component and system dynamics. In addition, analysis tools should continue to workreliably, even under various system conditions, providing accurate predictions of systems behaviour.This work is devoted to the study of a stand-alone photovoltaic power system.The proposed structure consists on photovoltaic array, a dc-dc buck converter, anda load connected in cascade through a dc bus. The research efforts focus on themodeling process and stability analysis, which leads to an implementation with acomprehensive description validated through simulation results.After giving the state-of-the-art in second chapter, the manuscript is divided into four chapters. These parts are dedicated to photovoltaic plant modeling, the numeric simulation improvements and dynamic investigation of the photovoltaic system under digital controls.The thesis presents an overview of the photovoltaic generator models. Then, amodified photovoltaic array model is proposed. We also detailed the photovoltaic plant modeling process. An improved Differential-Algebraic Equations (DAEs)solver is then investigated. We also described the photovoltaic system by a simplified discrete model. Then, the dynamic stability analysis is detailled. In addition,we have studied the chaotic behaviour that appears in the photovoltaic plant basedon the two-cell dc-dc buck converter.The aim of the last part is to show, using control theory and numerical simulation,how to apply a method to stabilize the chaotic orbit. Finally, to accomplish this aim, a time-delayed feedback controller is used.

Identiferoai:union.ndltd.org:theses.fr/2017REIMS001
Date30 March 2017
CreatorsAbdelmoula, Mohamed
ContributorsReims, Robert, Bruno
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0026 seconds