Return to search

Contrôlabilité de systèmes paraboliques linéaires couplés / Controllability of coupled linear parabolic systems

Dans cette thèse on s'intéresse à la contrôlabilité de deux classes de systèmes paraboliques linéaires.On caractérise dans un premier temps la contrôlabilité à zéro de systèmes à coefficients constants en dimension 1 lorsque les contrôles agissent sur différentes parties du domaine ou de sa frontière.On regarde ensuite avec le théorème de Fattorini la contrôlabilité frontière approchée de ces systèmes en dimension quelconque.On obtient notamment que les systèmes de 2 équations sont toujours contrôlables dans un rectangle si la zone de contrôle contient 2 directions.Dans un autre travail sur les systèmes à coefficients constants, on obtient une estimation du coût du contrôle frontière à zéro en dimension 1.On utilise ce résultat pour montrer que la contrôlabilité frontière à zéro dans des domaines cylindrique est réduite à la contrôlabilité frontière à zéro en dimension 1.On étudie ensuite la contrôlabilité approchée de systèmes en cascade avec un couplage d'ordre 1.On prouve que la contrôlabilité interne avec un couplage constant à toujours lieu, quel que soit la dimension et la zone de contrôle.On établit d'autre part une caractérisation de la contrôlabilité frontière en dimension 1 avec un couplage variable.Enfin, dans une dernière partie on s'intéresse à la contrôlabilité interne approchée de systèmes en cascade à coefficients variables en dimension 1.On montre qu'on est ramené à établir une caractérisation de la propriété de continuation unique pour une équation elliptique non-homogène.A l'aide de la caractérisation alors obtenue on montre en particulier comment la géométrie de la zone de contrôle peut influencer la contrôlabilité des systèmes. / This thesis focuses on the controllability of two classes of linear parabolic systems.We start with a caracterization of the null-controllability of systems with constant coefficients in dimension 1 where the controls are acting on different parts of the domain or its boundary.With the help of the theorem of Fattorini we then look at the boundary approximate controllability of these systems in any dimension.We show that a system of 2 equations is always approximately controllable on a rectangle if we assume that the control domain contains 2 directions.In another work on the systems with constant coefficients, we obtain an estimate of the boundary null-control cost in dimension 1.We then use this result to show that the boundary null-controllability in cylindrical domains is reduced to the boundary null-controllability in dimension 1.We then study the approximate controllability of cascade systems with a first order coupling term.We prove the distributed controllability when the coupling is constant, whatever the dimension and control domain are.On the other hand, we establish a caracterisation of the boundary controllability in dimension 1 for space-dependent couplings.Last, we investigate the distributed approximate controllability of cascade systems with space-dependent coefficients in dimension 1.Using the theorem of Fattorini and the structure of the systems under study we are lead to characterize the unique continuation property for a non-homogeneous elliptic equation.With the help of the caracterization then obtained we show in particular how the geometry of the control domain can affect the controllability properties of systems.

Identiferoai:union.ndltd.org:theses.fr/2013AIXM4329
Date14 November 2013
CreatorsOlive, Guillaume
ContributorsAix-Marseille, Boyer, Franck, Benabdallah, Assia
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds