Return to search

Partitionnement dans les Systèmes de Gestion de Données Parallèles

Au cours des dernières années, le volume des données qui sont capturées et générées a explosé. Les progrès des technologies informatiques, qui fournissent du stockage à bas prix et une très forte puissance de calcul, ont permis aux organisations d'exécuter des analyses complexes de leurs données et d'en extraire des connaissances précieuses. Cette tendance a été très importante non seulement pour l'industrie, mais a également pour la science, où les meilleures instruments et les simulations les plus complexes ont besoin d'une gestion efficace des quantités énormes de données. Le parallélisme est une technique fondamentale dans la gestion de données extrêmement volumineuses car il tire parti de l'utilisation simultanée de plusieurs ressources informatiques. Pour profiter du calcul parallèle, nous avons besoin de techniques de partitionnement de données efficaces, qui sont en charge de la division de l'ensemble des données en plusieurs partitions et leur attribution aux nœuds de calculs. Le partitionnement de données est un problème complexe, car il doit prendre en compte des questions différentes et souvent contradictoires telles que la localité des données, la répartition de charge et la maximisation du parallélisme. Dans cette thèse, nous étudions le problème de partitionnement de données, en particulier dans les bases de données parallèles scientifiques qui sont continuellement en croissance. Nous étudions également ces partitionnements dans le cadre MapReduce. Dans le premier cas, nous considérons le partitionnement de très grandes bases de données dans lesquelles des nouveaux éléments sont ajoutés en permanence, avec pour exemple une application aux données astronomiques. Les approches existantes sont limitées à cause de la complexité de la charge de travail et l'ajout en continu de nouvelles données limitent l'utilisation d'approches traditionnelles. Nous proposons deux algorithmes de partitionnement dynamique qui attribuent les nouvelles données aux partitions en utilisant une technique basée sur l'affinité. Nos algorithmes permettent d'obtenir de très bons partitionnements des données en un temps d'exécution réduit comparé aux approches traditionnelles. Nous étudions également comment améliorer la performance du framework MapReduce en utilisant des techniques de partitionnement de données. En particulier, nous sommes intéressés par le partitionnement efficient de données d'entrée avec l'objectif de réduire la quantité de données qui devront être transférées dans la phase intermédiaire, connu aussi comme " shuffle ". Nous concevons et mettons en œuvre une stratégie qui, en capturant les relations entre les tuples d'entrée et les clés intermédiaires, obtient un partitionnement efficace qui peut être utilisé pour réduire de manière significative le surcharge de communications dans MapReduce.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00920615
Date17 December 2013
CreatorsLiroz-Gistau, Miguel
PublisherUniversité Montpellier II - Sciences et Techniques du Languedoc
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0028 seconds