Dans ce travail de thèse, la commande sans modèle a tout d'abord été appliquée et adaptée au cas des systèmes présentant un retard connu ou inconnu. Cette méthode de commande ne nécessitant pas la connaissance précise d'un modèle du système, elle trouve toute son efficacité dans l'appréhension de retards inconnus. Différentes adaptations de l'approche classique, reposant sur la minimisation de critères temporels et fréquentiels, ont été proposées suivant le contexte d'un retard connu, borné ou inconnu. Elles nous ont permis d'élargir le spectre des systèmes considérés et d'améliorer les performances intrinsèques de la commande sans modèle. Les systèmes retardés, qui sont la cible privilégiée de ce travail, ont pu bénéficier de ces améliorations. Le problème du diagnostic des systèmes à retard a ensuite été abordé. Une nouvelle méthode de diagnostic sans modèle a été proposée, fondée sur les principes mêmes de la commande sans modèle. Cette proposition s'appuie sur la seule évolution temporelle des signaux entrée/sortie du système. Par la génération de signaux résiduels, la détection et la localisation de défauts d'actionneurs et du système est assurée sous certaines hypothèses. Finalement, nous avons montré en quoi la commande sans modèle s'apparente à une commande tolérante aux défauts et son efficacité en tant que telle a été prouvée. Une différence importante est à souligner par comparaison à d'autres commandes plus classiques, de type PI par exemple. En effet, la commande sans modèle est non seulement robuste à des signaux perturbateurs basses fréquences en entrée, à l'identique d'une structure PI classique, mais elle permet également de rejeter d’autres types de signaux révélateurs de défauts via l’estimation de certains paramètres de synthèse. Tout au long du mémoire, l'efficacité des approches proposées en commande et en diagnostic est perçue au travers d'exemples académiques / In this thesis, the model-free control was applied and adapted to delayed systems whose delay is either known or unknown. This method of control does not require the specific knowledge of a model of the system, it finds all its effectiveness in the apprehension of the unknown delays. Different adaptations of the classical approach, based on the minimization of frequency and temporal criteria, have been proposed in the context of a known, bounded or unknown delay. They allowed us to extend the range of systems considered and to improve the intrinsic performance of the model-free control. The delayed systems, which are the main target of this thesis, were able to benefit from these improvements. The problem of the fault-diagnosis of delayed systems was then addressed. A new method of model-free diagnosis has been proposed, based on model-free control principles. Our proposal only uses the temporal evolution of the system's input and output signals. Due to the generation of residual signals, the detection and localization of actuator/system faults were permitted under certain assumptions. Finally, we have studied the fault-tolerance properties of model-free control and its efficacy has been proven. Compared with more conventional methods, such as the PI Controller for example, a notable difference is to be mentioned. Indeed, unlike a PI controller, the model-free control is robust not only to low-frequency input disturbance signals, but it also allows for the rejection of other signal types by estimating summary parameters. Throughout this report, the effectiveness of the proposed approaches was illustrated in terms of control or diagnosis by multiple academic examples
Identifer | oai:union.ndltd.org:theses.fr/2018LORR0188 |
Date | 03 December 2018 |
Creators | Doublet, Maxime |
Contributors | Université de Lorraine, Join, Cédric, Hamelin, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds