Return to search

RADIC Voice Authentication: Replay Attack Detection using Image Classification for Voice Authentication Systems

Systems like Google Home, Alexa, and Siri that use voice-based authentication to verify their users’ identities are vulnerable to voice replay attacks. These attacks gain unauthorized access to voice-controlled devices or systems by replaying recordings of passphrases and voice commands. This shows the necessity to develop more resilient voice-based authentication systems that can detect voice replay attacks.
This thesis implements a system that detects voice-based replay attacks by using deep learning and image classification of voice spectrograms to differentiate between live and recorded speech. Tests of this system indicate that the approach represents a promising direction for detecting voice-based replay attacks.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:honors-1947
Date01 May 2023
CreatorsTaylor, Hannah
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUndergraduate Honors Theses
RightsCopyright by the authors., http://creativecommons.org/licenses/by-nc-nd/3.0/

Page generated in 0.0024 seconds