Non-communicable diseases (NCD) such as cancer, heart disease and cerebrovascular injury are dependent on or aggravated by inflammation. Their prevention and treatment is arguably one of the greatest challenges to medicine in the 21st century. The pleiotropic, proinflammatory cytokine; interleukin-l beta (IL-l~) is a primary, causative messenger of inflammation. Lipopolysaccharide (LPS) induction ofIL-l~ expression via toll-like receptor 4 (TLR4) in myeloid cells is a robust experimental model of inflammation and is driven in large part via p38-MAPK and NF-KB signaling networks. The control of signaling networks involved in IL-l~ expression is distributed and highly complex, so to perturb intracellular networks effectively it is often necessary to modulate several steps simultaneously. However, the number of possible permutations for intervention leads to a combinatorial explosion in the experiments that would have to be performed in a complete analysis. We used a multi-objective evolutionary algorithm (EA) to optimise reagent combinations from a dynamic chemical library of 33 compounds with established or predicted targets in the regulatory network controlling IL-l ~ expression. The EA converged on excellent solutions within 11 generations during which we studied just 550 combinations out of the potential search space of - 9 billion. The top five reagents with the greatest contribution to combinatorial effects throughout the EA were then optimised pair- wise with respect to their concentrations, using an adaptive, dose matrix search protocol. A p38a MAPK inhibitor (30 ± 10% inhibition alone) with either an inhibitor of IKB kinase (12 ± 9 % inhibition alone) or a chelator of poorly liganded iron (19 ± 8 % inhibition alone) yielded synergistic inhibition (59 ± 5 % and 59 ± 4 % respectively, n=7, p≥O.04 for both combinations, tested by one way ANOVA with Tukey's multiple test correction) of macrophage IL-l~ expression. Utilising the above data, in conjunction with the literature, an LPS-directed transcriptional map of IL-l ~ expression was constructed. Transcription factors (TF) targeted by the signaling networks coalesce at precise nucleotide binding elements within the IL-l~ regulatory DNA. Constitutive binding of PU.l and C/EBr-~ TF's are obligate for IL-l~ expression. The findings in this thesis suggest that PU.l and C/EBP-~ TF's form scaffolds facilitating dynamic control exerted by other TF's, as exemplified by c-Jun. Similarly, evidence is emerging that epigenetic factors, such as the hetero-euchromatin balance, are also important in the relative transcriptional efficacy in different cell types. Evolutionary searches provide a powerful and general approach to the discovery of novel combinations of pharmacological agents with potentially greater therapeutic indices than those of single drugs. Similarly, construction of signaling network maps aid the elucidation of pharmacological mechanism and are mandatory precursors to the development of dynamic models. The symbiosis of both approaches has provided further insight into the mechanisms responsible for IL-lβ expression, and reported here provide a - platform for further developments in understanding NCD's dependent on or aggravated by inflammation.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:551348 |
Date | January 2011 |
Creators | Small, Benjamin Gavin |
Contributors | Pedrosa Mendes, Pedro ; Rothwell, Nancy |
Publisher | University of Manchester |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.research.manchester.ac.uk/portal/en/theses/the-chemical-and-computational-biology-of-inflammation(4de5c19c-e377-4783-acfb-ad168ad35d46).html |
Page generated in 0.0015 seconds