Return to search

Optimal Batch Quantity Models for A Lean Production System with Rework and Scrap

In an imperfect manufacturing process, the defective items are produced with finished goods. Rework process is necessary to convert those defectives into finished goods. As the system is not perfect, some scrap is produced during this process of rework. In this research, inventory models for a single-stage production process are developed where defective items are produced and reworked, where scrap is produced, detected and discarded during the rework. Two policies of rework processes are considered (a) First policy: rework is done within the cycle, and (b) Second policy: rework is done after N cycles of normal production. Also, three types of scrap production and detection methods are considered for each policy, such as (i) scrap is detected before rework, (ii) scrap is detected during rework and (iii) scrap is detected after rework. Based on these inventory situations, the total cost functions for a single-stage imperfect manufacturing system are developed to find the optimum operational policy. Some numerical examples are provided to validate the model and a sensitivity analysis is carried out with respect to different parameters used to develop the model.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-0108103-140103
Date10 January 2003
CreatorsBiswas, Pablo
ContributorsDennis B. Webster, Lawrence Mann, Jr., Bhaba R. Sarker
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-0108103-140103/
Rightsunrestricted, I hereby grant to LSU or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University Libraries in all forms of media, now or hereafter known. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Page generated in 0.0102 seconds