Return to search

Heat transfer in solar absorber plates with micro-channels

Analytical, computational and experimental studies were carried out to investigate heat transfer and fluid flow in micro-channel absorber plates for compact (thin and light-weight) solar thermal collectors. The main objective of the work was to study different design and/or operating scenarios as well as study the significance of various micro-scaling effects. Analytical investigation showed that, under similar conditions, the proposed design yields a much higher fin efficiency, F and collector efficiency factor, F’ compared with the conventional solar collector design. An analytical model combining convective heat transfer in the collector fluid with axial conduction in the metal plate was developed. The predicted plate temperature profiles from the analytical model were in close agreement with the measured profiles. The model further showed that axial thermal conduction can significantly alter the plate temperature profile. Experiments were designed to represent real life operation of the proposed system. A CFD study, using the same design and operating parameters, produced results comparable with experiments. This numerical simulation also gave further insight into the heat transfer and fluid flow patterns in the micro-channel plate. The effect of channel cross section geometry was studied. The Nusselt number was observed to increase as the aspect ratio approached unity. Measured friction factors were similar in trend to the predictions for rectangular channels, although the overall rise in fluid temperature resulted in slightly lower friction factors. Thermal performance reduced slightly with increase in hydraulic diameter. The significance of various scaling effects was also investigated experimentally and numerically. Most of the typical scaling effects such as viscous dissipation and entrance effects were found to be insignificant however, conjugate heat transfer, surface boundary condition, surface finish and measurement uncertainties could be significant. The results showed a Reynolds number dependent Nusselt number which has been attributed to axial thermal conduction. It was also observed that only three walls were transferring heat; the walls of heat transfer had a uniform peripheral temperature while the heat flux varied peripherally. The closest simplified thermal boundary condition to represent heat transfer in these channels is the H1 with three (3) walls transferring heat. Increased surface roughness (obtained by using an etching technique to create the channels) was found to have a detrimental effect on heat transfer. The results showed that thermal improvement can be achieved by increasing the fluid velocity; however, pumping the thermal fluid above a pump power per plate area of 0.3 W/m2 resulted in marginal improvement. In practice, optimum microchannel geometry in plates should be sized based on fluid properties and operating conditions. The micro-channels should also have thin walls to minimise the effects of conjugate heat transfer. A Photovoltaic pump should be installed alongside the collector in order to provide pumping power required and minimise the overall fluid temperature rise. The results are beneficial for the design of micro-channel absorber plates for low heat flux operation up to 1000W/m2.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:682891
Date January 2015
CreatorsOyinlola, Muyiwa Adeyinka
PublisherUniversity of Warwick
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://wrap.warwick.ac.uk/77388/

Page generated in 0.2214 seconds