Return to search

Memory T cell compartmentalization, maintenance, and retention

Pathways and mechanisms for human memory T cell differentiation and maintenance have largely been inferred from studies of peripheral blood, though the majority of T cells are found in lymphoid and mucosal sites. We present here a novel, multidimensional, quantitative analysis of human T cell compartmentalization and maintenance over six decades of life in blood, lymphoid and mucosal tissues obtained from 56 individual organ donors. Our results reveal that the distribution and tissue residence of naïve, central and effector memory, and terminal effector subsets is contingent on both differentiation state and tissue localization. Moreover, T cell homeostasis driven by cytokine or TCR-mediated signals is dependent on CD4+ or CD8+ T cell lineage, subset differentiation and tissue localization, and cannot be inferred from blood. Our data provide an unprecedented spatial and temporal map of human T cell compartmentalization and maintenance, supporting new pathways for human T cell fate determination and homeostasis.
Memory T cells can remain in tissues as non-circulating, resident memory populations, which provide optimal protection against infection at barrier surfaces. Lung-resident memory T cells (TRM) mediate in situ protection to respiratory pathogens, though mechanisms for their maintenance and retention are unknown. Through whole transcriptome profiling, we identify a cohesive network of genes enriched in lung CD4+ TRM, including Itgad (CD11d), Cd69, and IFN-associated responders. We find that upregulation of CD11d enhances CD69 expression through type I IFN signaling downstream of homotypic cell adhesion, and is required for optimal T cell differentiation and lung retention. Moreover, blockade of IFNαR1 reduces CD11d expression and retention of influenza-generated lung TRM, suggesting that CD11d-dependent type I IFN signaling promotes TRM establishment. Our results implicate CD11d and type I IFN in retaining lung CD4+ TRM cells, and identify potential targets for modulating tissue immunity.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8C24VM2
Date January 2015
CreatorsYudanin, Naomi Ava
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0019 seconds