Let G be a graph with vertex set V and a distribution of pebbles on the vertices of V . A pebbling move consists of removing two pebbles from a vertex and placing one pebble on a neighboring vertex, and a rubbling move consists of removing a pebble from each of two neighbors of a vertex v and placing a pebble on v. We seek an initial placement of a minimum total number of pebbles on the vertices in V, so that no vertex receives more than one pebble and for any given vertex v ∈ V, it is possible, by a sequence of pebbling and rubbling moves, to move at least one pebble to v. This minimum number of pebbles is the 1-restricted optimal rubbling number. We determine the 1-restricted optimal rubbling numbers for Cartesian products. We also present bounds on the 1-restricted optimal rubbling number.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-11331 |
Date | 01 January 2019 |
Creators | Beeler, Robert A., Haynes, Teresa W., Murphy, Kyle |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Source | ETSU Faculty Works |
Page generated in 0.0021 seconds