Return to search

Innovative unidirectional recycled carbon fiber tape structure for high performance thermoplastic composites: technological developments, technology-structure-property relationship and modeling of composite tensile properties

The rapidly growing demand for carbon fiber reinforced plastics in high-tech industries, such as aerospace, defense, automotive, wind turbine engineering, building and sports, resulted in a high amount of waste in the form of dry waste (e.g., production off-cuts), wet waste (e.g., out-of-date prepreg) and end-of-life components waste (e.g., aircraft components). Furthermore, the production of carbon fibers is cost and energy-intensive. Therefore, technological developments for the gentle processing of recycled carbon fiber and its integration into high-performance composites with promising tensile properties have gained considerable attention. Consequently, injection molding, nonwovens and hybrid yarn technologies were developed in recent years to integrate recycled carbon fiber into the high-performance thermoplastic composite. It is unfortunate that these technologies develop composites with a lack of unidirectional fiber orientation; therefore, the potential of recycled carbon fiber in high-performance composites is not thoroughly exhausted.
This thesis primarily addresses the development of an innovative structure with a unidirectional fiber orientation termed “unidirectional recycled carbon fiber tape structure” for high-performance thermoplastics composites. The technological concept of the unidirectional structure comprises fiber opening, carding, drawing and a novel tape-forming process. In this concept, fiber opening, carding, and drawing processes were utilized to develop homogeneous, uniform, and highly oriented hybrid slivers. In the next step, these hybrid slivers were converted into a unidirectional recycled carbon fiber tape structure through a novel tape-forming process. To implement this concept, technological developments (investigations, modifications, optimization and further developments), were carried out in fiber opening, carding and drawing processes to develop a hybrid sliver with improved uniformity, homogeneity and unidirectional orientation. In the second phase, conception, design, technological developments, construction and prototype development were implemented to develop a novel tape-forming process. The result confirms that tape development technology comprising fiber opening, carding, drawing and prototype tape forming processes is an innovative, eco-friendly and sustainable technology compared to existing technologies.
Furthermore, the consolidation process transformed the unidirectional tape structure into high-performance thermoplastic composites. Subsequently, technology-structure-property relationships were established to develop composites with tailor-made properties. The analysis reveals that selecting optimum technological, consolidation and structural parameters develop tape and composite structures with unidirectional fiber orientation. As a result, experimental results of a high-performance composite developed from a unidirectional recycled carbon fiber tape structure show a very high tensile strength of 1350 ± 28 MPa and an E-module of 84.7 ± 2.3 GPa. This analysis confirms that unidirectional fibers configuration in composites brings a revolution toward developing cost-efficient, high-performance composites for load-bearing structural applications. Finally, theoretical and finite element modeling of tensile properties of high-performance composites reveals that modified models show good agreement with composite tensile properties.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:83849
Date28 February 2023
CreatorsKhurshid, Muhammad Furqan
ContributorsCherif, Chokri, Laourine, Ezzeddine Ben Tahar, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation10.4028/p-4nx4ct, 10.1177/15280837221077705, 10.1177/1528083720913530, 10.1080/00405000.2019.1690918, 10.1177/0021998319886043

Page generated in 0.0231 seconds