Return to search

An Integrated Proteomic Approach for Mapping the ALS-linked TDP-43 Interactome

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which an RNA-binding protein, TDP-43, mislocalizes and pathologically accumulates from its normal nuclear locale to the cytosol. Given that the subcellular localization and expression of TDP-43 is tightly regulated, we posit that identifying novel interactors of wild-type and mutant TDP-43 could reveal insight into networks involved in regulating its localization, ultimately driving neurodegeneration in ALS.
Using CRISPR/Cas9, our lab previously generated knock-in cell lines expressing GFP in the endogenous TARDBP locus (encoding for TDP-43) for both wildtype (WT) and an ALS-causing mutant (Q331K). We have shown that the Q331K mutation causes loss-of-function and mislocalization of TDP-43. I performed immunoprecipitation coupled to mass spectrometry (IP-MS) on this cell model to elucidate interactors of WT- and Q331K- TDP-43. Our data show that there is an overall loss of TDP-43 interactors in cells with the TDP-43Q331K mutation. By setting statistical cut-offs for significance, we identified 34 shared and 12 unique interactors of TDP-43WT. We used bioinformatic approaches to identify enriched pathways and literature searches to look for interactors relevant to TDP-43 and ALS pathobiology. Our shortlist of 14 candidates for validation included proteins involved in the nuclear mRNA export pathways, RNA binding proteins and proteins identified in other interactome studies and TDP-43 based screens.
Using orthogonal approaches, we show evidence of robust interaction of four top hits (PABPC1, HNRNPC, DDX39b and ELAVL1) with TDP-43WT, and a significant decrease in the degree of interaction of HNRNPC, DDX39b and ELAVL1 with TDP-43Q331K. Importantly, this decrease in interaction was only observed at the endogenous level, highlighting the importance of maintaining the steady state levels of TDP-43 in the cell for these assays. We characterized the effects of knockdown and overexpression of these four hits using protein-specific overexpression constructs and shRNAs and observed a significant increase in TDP-43 nuclear localization upon knockdown of these four hits, suggesting that there is a functional effect associated with hit knockdown. Overexpression or knockdown of the top hits in a splicing assay did not identify significant changes in TDP-43’s splicing or RNA binding abilities, suggesting that these hits do not affect splicing function in our hit characterization studies.
Using this novel experimental tool and unbiased screen, we identified alterations in TDP-43 protein-protein interactions in the context of ALS and have generated tools to characterize their roles in cellular functions using knockdown and overexpression approaches. Together with the knock-in cells, these tools will allow us to gain insight into pathways involved in driving neurodegeneration, in the context of ALS.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/42687
Date17 September 2021
CreatorsPatel, Anjali
ContributorsRousseaux, Maxime, Ngsee, Johnny
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsAttribution-NonCommercial-ShareAlike 4.0 International, http://creativecommons.org/licenses/by-nc-sa/4.0/

Page generated in 0.0011 seconds