Return to search

Measurement and Characterization of Terahertz Radiation Propagating Through a Parallel Plate Waveguide

As the amount of study into the terahertz (THz) region of the electromagnetic spectrum steadily increases, the parallel plate waveguide has emerged as a simple and effective fixture to perform many experiments. The ability to concentrate THz radiation into a small area or volume enables us to analyze smaller samples and perform more repeatable measurements, which is essential for future research. While the fundamental physics of PPW transmission are understood mathematically, the practical knowledge of building such a fixture for the THz domain and taking measurements on it with a real system needs to be built up through experience. In this thesis, multiple PPW configurations are built and tested. These include waveguides of different lengths and opening heights, using lenses and antennas to focus and collect radiation from the input and output, and different amounts of polish on the waveguide surface. A basic resonator structure is also built and measured as a proof of concept for future research. The two most useful propagation modes through the waveguide, the lowest order transverse magnetic (TEM) and transverse electric (TE) modes, were characterized on all of the setups. Additionally, a flexible fixture was designed and measured which will allow future work in the THz field to be much more reliable and repeatable.

Identiferoai:union.ndltd.org:pdx.edu/oai:pdxscholar.library.pdx.edu:open_access_etds-1316
Date01 January 2011
CreatorsWachsmuth, Matthew George
PublisherPDXScholar
Source SetsPortland State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceDissertations and Theses

Page generated in 0.0015 seconds