The science and technology of X-rays has only been part of human achievement for the past 100 years, while the study of image formation in general has endured for as long as 1000 years. The ability to conceive, design, and fabricate X-ray imagers, moreover, has existed for only the past 70 years, and X-ray astronomical telescopes have been in use for a mere 35 years. Considering that aplanatic, normal incidence telescope designs required more than 400 years to perfect, it is most interesting to note that the development of ‘aplanatic’ grazing incidence telescopes has taken only about 40 years. In order to improve and expand the field of X-ray astronomy, and imaging in general, we find that these days a comprehensive systems engineering approach to X-ray image formation must be undertaken. While some industrial interests have taken steps in this direction, any academic approach is lacking from within the archival literature to date, and there are virtually no established university courses. Indeed, it would seem that top level, optical-systems-engineering is exclusively reserved for those seasoned professionals who have accumulated (though somewhat artistically) the “know-how” to efficiently conceive and implement excellent optical designs. Such expert knowledge is not and should not be mysterious. To this end, we attempt to formulate a highly comprehensive approach to X-ray optical systems engineering and implement it within the context of the Wolter Type-I and Type-II (grazing incidence) telescopes currently utilized for practical X-ray/EUV astronomy. In addition, we will transform the classical paraboloid-hyperboloid designs into ‘aplanatic’ and ‘isoplanatic’, hyperboloid-hyperboloid systems, where certain coma conditions are minimized. As will be shown, one gains little improvement in performance when choosing a quasi-aplanatic mirror design over a classical one, owing to scatter and other image degradation effects. Next we will show that a generalized hyperboloid-hyperboloid design can be comprehensively optimized for any imaging requirement, where the operational field-of-view is weighted according to spatial information content. Our H-H design has been optimized for the GOES Solar X-ray Imager mission and adopted by NASA and NOAA. It is currently undergoing fabrication by Raytheon Optical Systems Inc. who is under subcontract to the Lockheed-Martin Solar and Astrophysics Laboratory. Our design is expected to result in an 80% increase in optical system performance over the original SXI baseline design.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:rtd-3008 |
Date | 01 January 2000 |
Creators | Thompson, Patrick Louis |
Publisher | University of Central Florida |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Retrospective Theses and Dissertations |
Rights | Written permission granted by copyright holder to the University of Central Florida Libraries to digitize and distribute for nonprofit, educational purposes. |
Page generated in 0.0019 seconds