This thesis presents a new experimental technique to determine the structure of train slipstreams. The highly turbulent, non stationary nature of slipstreams make their measurement difficult and time consuming as in order to identify the trends of behaviour several passages of the train have to be made. The new technique has been developed in order to minimise considerably the measuring time. It consists of a rotating rail rig to which a 1/50th scale model of a train is attached. Flow velocities are measured using two multi-hole Cobra probes, positioned close to the sides and top of the model. Tests were carried out at different model speeds. Velocity time histories for each configuration were obtained from ensemble averages of the results of a large number of runs (of the order of 80). From these it was possible to define velocity and turbulence intensity contours along the train as well as the displacement thickness of the boundary layer, allowing a more detailed analysis of the flow. Wavelet analysis was carried out on the experimental data to reveal details of the unsteady flow structure around the vehicle. It is concluded that, although this methodology introduces some problems the results obtained with this technique are in good agreement with previous model and full scale measurements.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563944 |
Date | January 2012 |
Creators | Del Valle Perez-Solero, Nahia |
Publisher | University of Birmingham |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://etheses.bham.ac.uk//id/eprint/3790/ |
Page generated in 0.0025 seconds