Morphogens are secreted signalling molecules that are expressed in restricted groups of cells within the developing tissue. From there, they are secreted and travel throughout the target field and form concentration gradients. These concentration profiles endow receiving cells with positional information. A number of experiments in Drosophila demonstrated that the morphogen Decapentaplegic (Dpp) forms activity gradients by inducing the expression of several target genes above distinct concentration thresholds at different distances from the source. This way, Dpp contributes to developmental fates in the target field such as the Drosophila wing disc. Although the tissue distribution as well as the actual shape and size of the Dpp morphogen concentration gradient has been visualized, the cell biological mechanisms through which the morphogen forms and maintains a gradient are still a subject of debate. Two hypotheses as to the dominant mechanism of movement have been proposed that can account for Dpp spreading throughout the Drosophila wing imaginal target tissue: extracellular diffusion and planar transcytosis, i. e. endocytosis and resecretion of the ligand that is thereby transported through the cells. Here, I present data indicating that implications of a theoreticalanalysis of Dpp spreading, where Dpp transport through the target tissue is solely based on extracellular diffusion taking into account receptor binding and subsequent internalization, are inconsistent with experimental results. By performing Fluorescence Recovery After Photobleaching (FRAP) experiments, I demonstrate a key role of Dynamin-mediated endocytosis for Dpp gradient formation. In addition, I show that most of GFP-Dpp traffics through endocytic compartments at the receiving epithelial cells, probably recycled through apical recycling endosomes (ARE). Finally, a Dpp recycling assay based on subcellular photouncage of ligand is presented to address specifically the Dpp recycling event at the receiving cells.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1106665288062-25959 |
Date | 20 December 2004 |
Creators | Pantazis, Periklis |
Contributors | Technische Universität Dresden, Mathematik und Naturwissenschaften, Biologie, Max-Planck-Institut für Molekulare Zellbiologie und Genetik, Dr. Marcos Antonio Gonzalez-Gaitan, Prof. Dr. Bernard Hoflack, Dr. Marcos Antonio Gonzalez-Gaitan, Prof. Dr. Christian Klämbt |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0029 seconds