TGFβ is involved in many pathological conditions, including autoimmune disorders, cancer, and cardiovascular and allergic diseases. We have previously found that TGFβ can suppress IgE-mediated mast cell activation in human and mouse mast cells in vitro. IL-33 is a recently discovered member of the IL-1 family capable of inducing mast cell responses and enhancing IgE-mediated activation. In this study, we investigated the effects of TGFβ on IL-33-mediated mast cell activation. Bone marrow-derived mast cells cultured in TGFβ -1, -2, or -3 showed reduced IL-33-mediated production of TNF, IL-6, IL-13 and MCP-1, in a concentration-dependent manner. Furthermore, TGFβ also reduced expression of the T1/ST2 receptor as well as IL-33-mediated TAK1 and ERK phosphorylation. TGF-ß1 injection suppressed IL-33-mediated production of systemic inflammatory cytokines in vivo. The role of IL-33 in the pathogenesis of allergic diseases is incompletely understood. These findings, consistent with our previously reported effects of TGFβ on IgE-mediated activation, demonstrate that TGFβ can provide broad and substantial inhibitory signals to activated mast cells.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-5013 |
Date | 01 January 2015 |
Creators | Ndaw, Victor S |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0018 seconds