Thallium is a highly toxic element that humans are exposed to mainly by consumption of drinking water and vegetables grown in soil with high thallium content but also through inhalation of particles in the air. Thallium is also present in fossil fuels, alloys, and in electronic utilities. The increasing use of the element and emissions from notably energy production has lead to a higher load on the surface of the Earth. This study aims at increasing the knowledge about the behaviour of thallium in aquatic environments. Focus has been on the redox chemistry of thallium in relation to its mobility, which is of great importance because Tl(I) and Tl(III) have very different properties in this respect. The relationship between Tl(I) and Tl(III) in surface waters from contaminated and uncontaminated environments was examined by ion chromatography connected on line to ICP-MS (inductively coupled plasma mass spectrometry). It was found in controlled systems that even though Tl(III) is thermodynamically unstable under fresh water conditions Tl(I) was oxidised in the presence of light and iron(III). This was also confirmed in field studies. When lake water samples were exposed to light, Tl(I) was oxidised and thallium was lost from the solution. The most likely explanation for this was adsorption of thallium to particle surfaces. The concentration of thallium in Swedish lakes and soil were measured. In unpolluted lakes the concentration ranges between 4.5-12 ng/l, the sediment concentration was 0.07-1.46 mg/kg. The anthropogenic load was found to have increased since the end of the Second World War although concentrations above background were found since the early industrialisation. In contaminated areas the concentration in soil ranges from 0.64-88 mg/kg, high concentrations were found in systems with alum shale and in soil exposed to runoff from a lead and zinc enrichment plant. The mobilisation of thallium from solid phases in contaminated areas was dependent on pH and about 50% of the leachable content was mobilised already at pH 5-6. Once it had been released to water it was highly mobile. These conditions suggest that in a large part of the Swedish environment a high mobility of thallium can be expected.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-356 |
Date | January 2006 |
Creators | Karlsson, Ulrika |
Publisher | Örebro universitet, Institutionen för naturvetenskap, Örebro : Örebro universitetsbibliotek |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Örebro Studies in Chemistry, 1651-4270 ; 5 |
Page generated in 0.0026 seconds