Return to search

Effect of phonon interference on the thermal conductivity and heat carriers / Effets d'interférences des phonons sur la conductivité thermique et les porteurs de chaleur

L'interférence des ondes de phonon peut modifier le spectre de phonon et ainsi la vitesse de groupe et la population de phonon. Ces interférences permettent de manipuler le flux d'énergie thermique en contrôlant la conductivité thermique et en utilisant les miroirs pour réfléchir les phonons. L'application technologique d'interférence de phonons dans les matériaux, par exemple la conversion renforcée thermoélectrique d'énergie et l'isolation améliorée thermique, a propulsé l'exploration des matériaux avec les interférences de phonons plus efficace.Dans un premier temps, nous proposons une nouvelle approche pour démontrer que la chaleur dans les solides peut être manipuler comme la lumière. Nous contrôlons avec précision le flux thermique par un métamatériau à l'échelle atomique qui comporte des défauts dans le réseau cristallin. L'interférence destructive entre les ondes de chaleur en suivant différents chemins mène à la réflexion totale de phonon et à une réduction remarquable de la conductance thermique. En exploitant cette interférence, nous modélisons une possibilité contre-intuitif de transport thermique: plus de chaleur est bloquée par l'ouverture des chaînes additionnelles de phonon. Le métamateriau thermique est un bon candidat de miroir atomique thermique de haute finesse. Nous renforçons la compréhension sur le contrôle cohérente des phonons qui peuvent être appliquée à la fois au son et à la propagation de chaleur.Dans un deuxième temps, nous introduisons un nano condensateur ultra-compacte de phonons cohérents formé par les miroirs d'interférence de haute finesse basée sur le métamatériau semi-conducteur à l'échelle atomique.Nos simulations de dynamique moléculaire montrent que le nano condensateur stocke les ondes monochromatiques térahertz, qui peuvent être utilisés pour un laser de phonon - l'émission de phonons cohérents. Un laser de phonon soit d'une ou de deux couleurs peut être réalisé en fonction de la géométrie du nano dispositif. Le stockage des phonons cohérents peut être réalisé par le refroidissement de la nano condensateur initialement thermalisé à la température ambiante ou par la technique pump-sonde. Le rétrécissement de la largeur de raie et de le nombre relatif de participation de phonon confirme un confinement dans la nanocavité par une quantité extrêmement faible de défauts de résonance. L'émission des faisceaux acoustiques cohérents en térahertz de la nano condensateur peuvent être réalisés en appliquant une contrainte réversible accordable qui décale les fréquences d'antirésonance.Enfin, nous étudions l'effet d'interférences destructrice de phonon à deux-chemin induite par les forces interatomiques de longue portée sur la conductance thermique et la conductivité d'un alliage silicium-germanium par des calculs atomiques. La conductance thermique à travers un plan atomique de germanium dans le réseau de silicium est sensiblement réduit par l'interférence destructrice du chemin de phonon entre les voisins les plus proches avec l'interaction directe contournant les atomes de défauts. Une réduction quintuple dans la conductivité thermique dans un alliage SiGe à la température ambiante a été observée en introduisant les forces de longue portée. Nous démontrons le rôle prédominant des interférences de phonons harmoniques régissant la conductivité thermique de matières solides en supprimant la diffusion inélastique de phonon à basse température. De telles interférences fournissent un mécanisme résistif harmonique pour contrôler la conduction de chaleur à travers les comportements cohérents de phonons dans les solides. / Wave interference of phonons can modify the phonon spectrum and thereby the group velocity and phonon population. These wave interferences allow the flow of thermal energy to be manipulated by controlling the materials lattice thermal conductivity and using thermal mirrors to reflect thermal phonons.The technological application of the phonon interference in materials, such as enhanced thermoelectric energy conversion and improved thermal insulation,has thrusted the exploration for highly efficient wave interference materials. First, we provide a new approach to demonstrate that heat in solids can be manipulated like light. We precisely control the heat flow by the atomic-scale phononic metamaterial, which contains deliberate flaws in the crystalline atomic lattice,channeling the heat through different phonon paths. Destructive interference between heat waves following different paths leads to the total reflection of the heat current and thus to the remarkable reduction in the material ability to conduct heat. By exploiting this destructive phonon interference, we model a very counter-intuitive possibility of thermal transport: more heat flow is blocked by the opening of the additional phonon channels. Our thermal metamaterial is a good candidate for high-fi nesse atomic-scale heat mirrors. We provide an important further insight into the coherent control of phonons which can be applied both to sound and heat propagation.Secondly, we introduce a novel ultra-compact nanocapacitor of coherent phonons formed by high-finesse interference mirrors based on atomic-scale semiconducto rmetamaterials. Our molecular dynamics simulations show that the nanocapacitor stores monochromatic terahertz lattice waves, which can be used for phonon lasing - the emission of coherent phonons. Either one- or two-color phonon lasing can be realized depending on the geometry of the nanodevice. The two-color regime of the interference cavity originates from different incidence-angle dependence of phonon wave packet transmission for two wave polarizations at the respective antiresonances. Coherent phonon storage can be achieved by cooling the nanocapacitor initially thermalized at room temperature or by the pump-probe technique. The line width narrowing and the computed relative phonon participation number confirm strong phonon confinement in the interference cavity by an extremely small amount of resonance defects. The emission of coherent terahertz acoustic beams from the nanocapacitor can be realized by applying tunable reversible stress which shifts the antiresonance frequencies.Finally, we investigate the role of two-path destructive phonon interference induced by long-range interatomic forces on the thermal conductance and conductivityof a silicon-germanium alloy by atomistic calculations. The thermal conductance across a germanium atomic plane in the silicon lattice is substantially reduced by the destructive interference of the nearest-neighbour phononpath with a direct path bypassing the defect atoms. Such an interference causes a fivefold reduction in the lattice thermal conductivity in a SiGe alloy at room temperature. We demonstrate the predominant role of harmonic phonon interferences in governing the thermal conductivity of solids by suppressing the inelastic scattering processes at low temperature. Such interferences provide a harmonic resistive mechanism to explain and control heat conduction through the coherent behaviours of phonons in solids.

Identiferoai:union.ndltd.org:theses.fr/2015SACLC002
Date19 October 2015
CreatorsHan, Haoxue
ContributorsParis Saclay, Volz, Sebastian
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds