In recent years, there has been a substantial growth in the application of carbon fiber reinforced plastic (CFRP) composite materials in automobile and aerospace industries due to their superior properties such as lightweight, high strength, excellent corrosion resistance, and minimal fatigue concerns. The present study evaluates the drilling performance of woven carbon fiber reinforced plastics under both dry and cryogenic cooling conditions using uncoated solid carbide drill with a through-hole for coolant application.
The effects of the cooling conditions and the cutting parameters on drilling performance in drilling CFRP were evaluated in terms of generated thrust force, torque, cutting edge radius, outer corner flank wear, hole quality (including surface roughness, diameter error, roundness, delamination, burr formation, sub-surface quality). Both cooling conditions and cutting parameters were found to influence the thrust force and torque at different levels. The thrust force and the torque are higher in cryogenic cooling under all cutting parameters. In most of the cases, cryogenic drilling gives better bore-hole quality with lower surface roughness, more accurate diameter, less burr generation, better sub-surface quality, etc. Also, the tool-wear rates measured in drilling shows that cryogenic drilling produces less tool-wear than dry drilling does.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:me_etds-1038 |
Date | 01 January 2014 |
Creators | Xia, Tian |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Mechanical Engineering |
Page generated in 0.0018 seconds