The machining of a new alloy often presents a challenge. While useful assumptions can be drawn from materials of similar properties, there will always be unpredictable outcomes. Titanium alloys have been employed in the aerospace industry due to their high mechanical properties and good strength-to-weight ratio. Ti-64 (Ti-6Al-4V) was the standard choice until recently, when Ti-555.3 (Ti-5Al-5V-5Mo-3Cr) began to take its place. Ti-555.3 has improved resistance to fatigue and higher mechanical properties compared to Ti-64 and is able to maintain its strength when exposed to high temperatures, which warrants its acceptance for many applications. However, its chemical reactivity, low thermal conductivity and high mechanical properties are known to cause challenges when cutting this alloy. Making use of both experimental procedures and computational resources, this work presents a comparison between these two aerospace alloys under different process conditions, setting the ground for further academic development and optimization strategies. Determining that these alloys are substantially different from a machinability standpoint (lower tool life, abrasion & chipping as dominant wear mechanisms and nonuniform chip formation for Ti555.3 versus Ti-64). Based on this further investigation should be carried out for optimal tooling selection to improve the machining of Ti555.3. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/24769 |
Date | January 2019 |
Creators | Stolf, Pietro |
Contributors | Veldhuis, Stephen C., Mechanical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds