Return to search

Characterisation of a novel tick-derived dendritic cell modulator, Japanin

Dendritic cells (DC) play a key role in immunity and represent a great target for modulation, because of their ability to prime T cells and direct their polarisation into effector subsets. Ticks release immunomodulatory compounds in their saliva, possibly in order to evade host immune responses during feeding. We have recently reported that Rhipicephalus appendiculatus ticks produce ‘Japanin’, a secretory lipocalin that arrests differentiation of monocytes into DC and reprogrammes maturation of DC in response to various stimuli towards a tolerogenic phenotype . Japanin was cloned and recombinantly expressed in a baculovirus system for subsequent immunological and biochemical analysis. This study was set out to further investigate the immunomodulatory activity of Japanin as well as the underlying mechanism of action. We have discovered that Japanin prevents DC-mediated proliferation and polarisation of allogeneic T cells. Experiments with labelled Japanin have demonstrated that it binds predominantly to ex vivo generated human monocyte-derived DC (moDC) and to a reduced degree to monocyte and DC populations in peripheral blood, yet to no other blood leucocytes. We have identified CD206, also known as the mannose receptor, as a Japanin-binding receptor on moDC. This identification has been achieved by crosslinking and subsequent pull-down of Japanin-receptor complexes from moDC. Affinity studies with recombinant CD206 constructs have confirmed the binding to Japanin. Moreover, the binding has been verified by specific siRNA knock-down of CD206 in moDC, which resulted in significantly decreased binding of Japanin. Unexpectedly, CD206 has appeared to be dispensable for at least most of the DC-modulatory activity of Japanin. Therefore, attempts were made to determine other factors in the mode of action of Japanin, through which we have found that IL-10 is not essentially involved. Further results have suggested that the activity of Japanin demands cell contact. Collectively, we have come to the conclusion that the mechanism of action of Japanin might require internalisation by DC, potentially enabling modulation of intracellular pathways involved in the regulation of DC maturation.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629541
Date January 2014
CreatorsBurger, Lena F.
ContributorsAustyn, Jonathan M.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:cbe8d327-8907-40ab-b410-36c21011f4db

Page generated in 0.0016 seconds