Return to search

Twistors in curved space

From the Introduction, p. 1. During the past decade, the theory of twistors has been introduced and developed, primarily by Professor Roger Penrose, as part of a long-term program aimed at resolving certain difficulties in present-day physical theory. These difficulties include, firstly, the problem of combining quantum mechanics and general relativity, and, secondly, the question of whether the concept of a continuum is at all relevant to physics. Most models of space-time used in general relativity employ the idea of a manifold consisting of a continuum of points. This feature of the models has often been criticised, on the grounds that physical observations are essentially discrete in nature; for reasons that are mathematical, rather than physical, the gaps between these observations are filled in a continuous fashion (see, for example, Schrodinger (I), pp.26-31). Although analysis (in its generally accepted form) demands that quantities should take on a continuous range of values, physics, as such,does not make such a demand. The situation in quantum mechanics is not all that much better since, although some quantities such as angular momentum can only take on certain discrete values, one still has to deal with the complex continuum of probability amplitudes. From this point of view it would be desirable to have all physical laws expressed in terms of combinatorial mathematics, rather than in terms of (standard) analysis.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:5429
Date January 1975
CreatorsWard, R S (Richard Samuel), 1951-
PublisherRhodes University, Faculty of Science, Mathematics
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Format93 leaves, pdf
RightsWard, R S (Richard Samuel), 1951-

Page generated in 0.0017 seconds