A two-step hydrothermal method was applied to synthesis Vanadium Sulfide (IV) coupled with commercial P25 on TiO2 nanoparticle (VS4-on-P25). Materials were characterized by scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV-Vis), diffuse reflectance UV-Vis spectroscopy and Raman spectroscopy. Photocatalytic activity of this new material was determined by photo-degradation of Methylene blue (MB) under UV irradiation. Experiments show that the VS4-on-P25 exhibits a higher photocatalytic activity than commercial P25 by providing more active site for dye adsorption, and reducing the recombination of charge carriers. Furthermore, the VS4-on-P25 extends its light-absorption spectrum into visible-light range due to its narrower band gap. The highest photocatalytic activity was found with a VS4 loading of 6 wt.%, which outperforms pure P25 by a factor of 2.29 in MB degradation rate.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/31378 |
Date | January 2014 |
Creators | Duan, Aoshu |
Contributors | Zhang, Zisheng |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds