The objective of this study is to investigate the penetration and perforation resistance of alumina ceramics against kinetic energy projectiles. There are several different mechanisms by which a target can fail when it is subjected to impact of a projectile and these may occur singly or in combinations of two or more. The presence of large number of penetration and failure mechanisms makes the investigation of the perforation very difficult. Because of this difficulty, the analytical investigations of penetration and perforation processes usually assume one type of failure mechanism. One of these analytical investigations is reviewed and it is seen that this analytical model is capable of predicting after impact parameters reasonably accurately. A parallel investigation of this problem is also been carried out numerically by using
Autodyn hydrocodes. Numerical study is capable of simulating the main changes in ceramic/steel composite target during penetration process of kinetic energy projectile. Results of analytical and numerical investigations are parallel to each other. A set of experiments was carried out for checking the results of analytical and numerical calculations with the experimental data.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/4/1260450/index.pdf |
Date | 01 December 2003 |
Creators | Cakir, Tanju |
Contributors | Yildirim, Orhan |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0021 seconds