In today& / #8217 / s market conditions, higher tool life and durable cutting tools which can stand high cutting speeds are required in chip removal process. In order to improve the performance of cutting tools, coatings are employed extensively. Cubic boron nitride (cBN) is a new kind of coating material for cutting tools due to its outstanding properties and testing of cBN as a hard coating for machining have been increasing in recent years. However, there are some challenges such as compressive residual stress, poor adhesion and limiting coating thickness during the deposition of cBN on substrates.
In this study, cubic boron nitride (cBN) coatings are formed on cutting tools from hexagonal boron nitride (hBN) target plates. For this purpose, a physical vapor deposition (PVD) system is utilized. PVD system works on magnetron sputtering technique in which material transfer takes place from target plate to substrate surface. Firstly, cBN coatings are deposited on steel
and silicon wafer substrates for measurements and analyses. Compositional, structural and mechanical measurements and analysis are performed for the characterization of coatings. Next, several types of cutting tools are coated by cBN and the effects of cBN coatings on cutting performance are investigated.
Finally, it can be said that cubic boron nitride coatings are successfully formed on substrates and the improvement of wear resistance and machining performance of cBN coated cutting tools are observed.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12610640/index.pdf |
Date | 01 June 2009 |
Creators | Cesur, Halil |
Contributors | Yazicioglu, Yigit |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for METU campus |
Page generated in 0.0018 seconds