Return to search

Development of ultra-sensitive immunoassay on Gyrolab microfluidic platform using Binding Oligo Ladder Detection : Enhancing Gyrolab biomarker assays using Exazym®

Immunoassays are widely used for detection of antigens in a wide range of applications including assays in pharmaceutical development. Immunoassays are continuously improved in many aspects including automatization, miniaturization and extending the dynamic range. The need to measure low abundance molecules are challenging and the need to improve the sensitivity is desired. The Gyrolab technology is a miniaturized immunoassay performed in an automated system covering a broad concentration range. In order to  extend the sensitivity, the technology is combined with Binding Oligo Ladder Detection (BOLD) amplification. The technology behind BOLD or Exazym ® utilizes a DNA primer, a polymerase, and a template (RNA) to generate a ladder-like modified DNA strand. Antibodies with affinity for the polymerized DNA:RNA hybrid strand (duplex) conjugated with reporter molecules are introduced to the system, resulting in an increased number of signal-generating molecules associated with each bound analyte molecule. In this thesis, the development of an ultra-sensitive immunoassay is pursued by applying Exazym ® add-on reagents to the Gyrolab platform, comparing performance with the standard Gyrolab sandwich assay and other commercially available high-performing TNF-α assays. The work includes characterization of a wide range of reaction variables involved in the BOLD signal amplification process including hybridization, polymerization, and detection of a synthetic oligonucleotide. The breakthrough involves the introduction of Allophycocyanin (APC) as a fluorescent conjugate, significantly improving sensitivity and signal-to-noise ratios. The BOLD amplified sensitivity for the TNF-α assay approaches levels seen in ultra-sensitive biomarker assays like Erenna ® and Simoa®. Exazym® technology on the Gyrolab platform allows highly sensitive biomarker assays with minimal sample volume and a 1–2-hour run-time. The study marks substantial progress in achieving ultra-sensitive biomarker assays on the Gyrolab platform through BOLD signal amplification. The use of APC-conjugated detection reagents holds promise for future optimization studies.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-525091
Date January 2024
CreatorsVadi Dris, Sam
PublisherUppsala universitet, Institutionen för farmaci
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC K, 1650-8297 ; 24001

Page generated in 0.0024 seconds