x, 72 p. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / The theory of equivariant homology and cohomology was first created by Bredon in his 1967 paper and has since been developed and generalized by May, Lewis, Costenoble, and a host of others. However, there has been a notable lack of computations done. In this paper, a version of the Serre spectral sequence of a fibration is developed for RO ( G )-graded equivariant cohomology of G -spaces for finite groups G . This spectral sequence is then used to compute cohomology of projective bundles and certain loop spaces.
In addition, the cohomology of Rep( G )-complexes, with appropriate coefficients, is shown to always be free. As an application, the cohomology of real projective spaces and some Grassmann manifolds are computed, with an eye towards developing a theory of equivariant characteristic classes. / Adviser: Daniel Dugger
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/8284 |
Date | 06 1900 |
Creators | Kronholm, William C., 1980- |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Thesis |
Relation | University of Oregon theses, Dept. of Mathematics, Ph. D., 2008; |
Page generated in 0.0017 seconds