P68 RNA helicase is a RNA helicase and an ATPase belonging to the DEAD-box family. It is important for the growth of normal cells, and is implicated in diverse functions ranging from pre-mRNA splicing, transcriptional activation to cell proliferation, and early organ development. The protein is documented to be phosphorylated at several amino-acid residues. It was previously demonstrated in several cancer cell-lines that p68 gets phosphorylated at threonine residues during treatments with TNF-α and TRAIL. In this study, the role of threonine phosphorylation of p68 under the treatment of anti-cancer drug, oxaliplatin in the colon cancer cells is characterized. Oxaliplatin treatment activates p38 MAP-kinase, which subsequently phosphorylates p68 at T564 and/or T446. P68 phosphorylation, at least partially, influences the role of the drug on apoptosis induction. This study shows an important mechanism of action of the anti-cancer drug which could be used for improving cancer treatment.
This study also shows that p68 is an important transcriptional regulator regulating transcription of the cytoskeletal gene TPPP/p25. Previous analyses revealed that p68 RNA helicase could regulate expression of genes responsible for controlling stability and dynamics of different cytoskeletons. P68 is found to regulate TPPP/p25 gene transcription by associating with the TPPP/p25 gene promoter. Expression of TPPP/p25 plays an important role in cellular differentiation while the involvement of p68 in the regulation of TPPP/p25 expression is an important event for neurite outgrowth. Loss of TPPP expression contributes to the development and progression of gliomas. Thus, our studies further enhance our understanding of the multiple cellular functions of p68 and its regulation of the cellular processes.
Identifer | oai:union.ndltd.org:GEORGIA/oai:digitalarchive.gsu.edu:biology_diss-1125 |
Date | 07 December 2012 |
Creators | Dey, Heena T |
Publisher | Digital Archive @ GSU |
Source Sets | Georgia State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Biology Dissertations |
Page generated in 0.0016 seconds