Return to search

Déconvolution Multicanale et Détection de Sources en utilisant des représentations parcimonieuses : application au projet Fermi

Ce mémoire de thèse présente de nouvelles méthodologies pour l'analyse de données Poissoniennes sur la sphère, dans le cadre de la mission Fermi. Les objectifs principaux de la mission Fermi, l'étude du fond diffus galactique et l'établissement du catalogue de source, sont com pliqués par la faiblesse du flux de photons et les effets de l'instrument de mesure. Ce mémoire introduit une nouvelle représentation mutli-échelles des données Poissoniennes sur la sphère, la Transformée Stabilisatrice de Variance Multi-Echelle sur la Sphère (MS-VSTS), consistant à combiner une transformée multi-échelles sur la sphère (ondelettes, curvelets), avec une transformée stabilisatrice de variance (VST). Cette méthode est appliquée à la suppression du bruit de Poisson mono et multicanale, à l'interpolation de données manquantes, à l'extraction d'un modèle de fond et à la déconvolution multicanale. Enfin, ce mémoire aborde le problème de la séparation de composantes en utilisant des représentations parcimonieuses (template fitting).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00670302
Date07 December 2011
CreatorsSchmitt, Jeremy
PublisherUniversité Paris Sud - Paris XI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds