Le but de cette thèse est d'étudier les structures symplectiques dans la catégorie des variétés linéaires par morceaux (PL). La question centrale est de déterminer si toute variété symplectique lisse $(M,omega)$ peut être triangulée de manière symplectique, au sens où il existe une variété linéaire par morceaux $K$ et une triangulation $h :K -> M$ telle que $h^*omega$ est une forme symplectique constante par morceaux. Nous étudions d'abord un problème plus simple, qui consiste à trianguler les formes volumes lisses. Étant donnée une variété lisse $M$ munie d'une forme volume $Omega$, nous montrons qu'il existe une triangulation lisse $h :K -> M$ telle que $h^*Omega$ est une forme volume constante par morceaux. En particulier, les variétés symplectiques lisses de dimension 2 admettent donc des triangulations symplectiques. Étant donnée une variété symplectique fermée $(M,omega)$, nous montrons ensuite que pour certaines triangulations lisses $h :K -> M$, on peut, par une modification arbitrairement petite du complexe $K$, supposer que la forme $h^*omega$ est de rang maximal le long de tous les simplexes de $K$. Ce résultat permet d'approximer arbitrairement bien toute variété symplectique fermée par une variété symplectique PL. Nous nous intéressons finalement au cas d'une sous-variété symplectique $M$ d'un espace ambiant qui admet lui-même une triangulation symplectique. Nous montrons qu'il est possible de construire un cobordisme entre la sous-variété $M$ considérée et une approximation lisse par morceaux de celle-ci, triangulée par un complexe symplectique. / In this thesis, we study symplectic structures in a piecewise linear (PL) setting. The central question is to determine whether a smooth symplectic manifold can be triangulated symplectically, in the sense that there exists a triangulation $h :K -> M$ such that $h^*omega$ is a piecewise constant symplectic form on $K$. We first focus on a simpler related problem, and show that any smooth volume form $Omega$ on $M$ can be triangulated. This means that there always exists a triangulation $h :K -> M$ such that $h^*Omega$ is a piecewise constant volume form. In particular, symplectic surfaces admit symplectic triangulations. Given a closed symplectic manifold $(M,omega)$, we then prove that there exists triangulations $h :K -> M$ for which the piecewise smooth form $h^*omega$ has maximal rank along all the simplices of $K$. This result allows to approximate arbitrarily closely any closed symplectic manifold by a PL one. Finally, we investigate the case of a symplectic submanifold $M$ of an ambient space which is itself symplectically triangulated, and give the construction of a cobordism between $M$ and a piecewise smooth approximation of $M$, triangulated by a symplectic complex. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/287522 |
Date | 22 May 2019 |
Creators | Distexhe, Julie |
Contributors | Bertelson, Mélanie, Fine, Joel, Gutt, Simone, Cieliebak, Kai, Meigniez, Gaël GM |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | French |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | 3 full-text file(s): application/pdf | application/pdf | application/pdf |
Rights | 3 full-text file(s): info:eu-repo/semantics/restrictedAccess | info:eu-repo/semantics/openAccess | info:eu-repo/semantics/closedAccess |
Page generated in 0.0023 seconds