One of the most significant current discussions in forward fall research is the effect of walking speed on the likelihood of a fall after a trip. Considering the limited research studies perturbing individual participants at multiple walking speeds, the objective of this research study was to determine how walking speed influences tripping responses and recovery. A tripping device was built to apply large impulsive perturbations to the left ankle and induce stumbling reactions in humans walking on a motorized treadmill. The tripping device and experimental set-up were successful in eliciting large EMG responses following a perturbation at slow, medium, and fast walking speeds. However, during the final stages of piloting, electrical and mechanical issues lead to a breakdown of the tripping device. As a result, only a single set of participant data was collected and able to be fully processed. None the less, the qualitative kinematic and EMG results suggest an increased ability is required to activate muscles to take a recovery step and successfully decelerate the forward trunk motion and ultimately recover from a trip at faster speeds compared to slower walking speeds. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2012-08-6156 |
Date | 27 November 2012 |
Creators | Salinas, Mandy Marie |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | thesis |
Format | application/pdf |
Page generated in 0.0021 seconds