Return to search

Modulační mechanizmy nociceptivních TRP kanálů / Modulatory mechanisms of nociceptive TRP channels

Detection of painful stimuli in the periphery is mediated by temperature-sensitive transient receptor potential (TRP) channels which are expressed in primary afferent endings of free sensory neurons called nociceptors. TRP channels in nociceptors are involved in the detection of thermal, but also mechanical and chemical stimuli. Out of seven known types of temperature-sensitive TRP channels, three are responsible for detecting painful temperatures: vanilloid receptors TRPV1 (> 42 o C) and TRPV2 (> 52 o C) detect noxious heat, and ankyrin receptor TRPA1 detects noxious cold (< 17 o C). Better knowledge of TRP channel mechanisms of action is essential for understanding TRP channel functions and ultimately for the design of potential analgesics. New findings presented in this thesis clarify mechanisms of action of TRPV1 and TRPA1 receptors, focusing on camphor and voltage sensitivity of TRPV1 channels and calcium modulation of TRPA1 channels. The first topic discussed in this thesis is the mechanism of camphor sensitivity of TRPV1 receptor. Camphor is a naturally occurring substance known since time immemorial for its effective analgesic properties, yet its mechanism of action is not understood. Camphor is known to be a partial agonist of TRPV1 channel, a full agonist of TRPV3 channel, but also an inhibitor of...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:330413
Date January 2013
CreatorsMaršáková, Lenka
ContributorsVlachová, Viktorie, Novotný, Jiří, Zemková, Hana
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0014 seconds