In transport logistic operations, an efficient delivery plan and better utilisation of vehicles will result in fuel cost savings, reduced working hours and even reduction of carbon dioxide emissions. This thesis proposes various algorithmic approaches to generate improved performance in automated vehicle load packing and route planning. First, modifications to best-fit heuristic methodologies are proposed and then incorporated into a simple but effective “look-ahead” heuristic procedure. The results obtained are very competitive and in some cases best-known results are found for different sets of constraints on three-dimensional strip packing problems. Secondly, a review and comparison of different clustering techniques in transport route planning is presented. This study shows that the algorithmic approach performs according to the specific type of real-world transport route planning scenario under consideration. This study helps to achieve a better understanding of how to conduct the automated generation of vehicle routes that meet the specific conditions required in the operations of a transport logistics company. Finally, a new approach to measuring the quality of transportation route plans is presented showing how this procedure has a positive effect on the quality of the generated route plans. In summary, this thesis proposes new tailored and effective heuristic methodologies that have been tested and incorporated into the real-world operations of a transport logistics company. The research work presented here is a modest yet significant advance to better understanding and solving the difficult problems of vehicle loading and routing in real-world scenarios.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:682646 |
Date | January 2015 |
Creators | Duong, Thai Ha |
Publisher | University of Nottingham |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://eprints.nottingham.ac.uk/29793/ |
Page generated in 0.0118 seconds