Le but de cette thèse est l'étude du développement de la turbulence dans le vent solaire entre 0.2 et 1 unité astronomique (UA) du soleil (i.e. l'orbite terrestre). L'étude est faite en résolvant numériquement les équations de la MHD après soustraction de l'écoulement moyen radial. Les deux aspects de la turbulence qui nous intéressent sont la structure 3D des spectres d’énergie et le chauffage du plasma qui résulte de la dissipation turbulente des tourbillons et couches de courant emportés par le vent. On cherche à déterminer quelles sont les conditions du plasma près du soleil qui permettent d’aboutir à ce qu'on observe à 1 UA. Un but important de mon travail est aussi de déterminer si la physique qui est présente dans les équations que j'intègre (la MHD) suffit pour arriver à reproduire ce qu'on a déjà observé dans cet intervalle de distance. Nous introduisons le contexte de notre travail dans la première partie. On y trouve les équations de base, une introduction à la turbulence, un résumé sur la physique du vent solaire et de la couronne solaire. La partie 2 sera consacrée à l'étude de l'anisotropie de la cascade turbulente, et plus précisément du spectre 3D. Dans la zone inertielle, les mesures in-situ vers 1 UA montrent des figures complexes pour ces spectres qu'on peut interpréter de plusieurs façons : nos simulations numériques permettent de lever toute ambiguïté. Plus précisément, la question est de savoir quand intervient l'axe soleil-terre, et quand intervient l'axe du champ magnétique moyen. La partie trois est centrée sur le chauffage turbulent dans les vents rapides et lents. Entre 0.3 et 1 UA, la température des protons diminue anormalement lentement, ce qui indique une source de chauffage, qu'on suppose ici être la dissipation des tourbillons et couches de courant emportés par le vent. Pour démontrer que cette hypothèse est raisonnable, nous considérons d’abord le modèle de Burgers qui est un modèle pour l'évolution d’ondes sonores. Ensuite, nous passons à l'étude du cas plus complexe d'un volume de plasma 3D. Nous examinerons les conditions initiales correspondant aux vents lents et rapides. Dans les deux cas, on adoptera des anisotropies spectrales différentes. Dans la dernière partie, nous exposerons les conclusions de notre travail et proposerons d'introduire l'anisotropie de la température dans un travail futur. / The aim of this thesis is the study of the development of turbulence in the solar wind between 0.2 and 1 astronomical unit (AU) from the Sun (i.e. Earth’s orbit). The study is done by solving the magnetohydrodynamics equations (MHD) after subtracting the mean radial flow. The two aspects of turbulence that interest us are the 3D structure of the energy spectra and the heating of plasma that results from the turbulent dissipation of eddies and current layers transported by the wind. We want to determine which conditions of the plasma close to the Sun can result into what we observe at 1 AU. We have relatively detailed measurements of what happens between 0.3 and 1 AU. One important goal of this work is to determine if the physics present in the equations that are integrated (MHD) is sufficient to reproduce what is observed in this interval of distances. We introduce the context of our work in the first part. We give a summary of the physics concerning the solar wind and the solar corona, and the basic equations used to describe the solar wind plasma and an introduction to turbulence. Part 2 is dedicated to the study of anisotropy in the turbulent cascade, which characterizes 3D spectra. In the inertial range, in-situ measurements at 1 AU show complex figures for these spectra that we can interpret in several ways : numerical simulations allow to clear ambiguities. An important question is to know whether the Earth-Sun symmetry axis or the mean magnetic field axis is dominant.The third part focuses on turbulent heating in fast and slow winds. Between 0.3 and 1 AU, proton temperature decreases more slowly than expected, which requires a heating source. This source is supposed to be the continuous dissipation of eddies and current layers transported by the wind. To start with, we consider the simple case of Burgers equation, which is a one-dimensional model for shock formation. Thereupon, we switch to the 3-dimensional case, where we consider initial conditions appropriate for slow and fast winds. In the last part we expose our conclusions and propose the implementation of temperature anisotropy as future work.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLS373 |
Date | 22 October 2018 |
Creators | Montagud Camps, Victor |
Contributors | Université Paris-Saclay (ComUE), Grappin, Roland, Pantellini, Filippo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0015 seconds